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Abstract. We propose the use of a particle filter as a solution to the rigid shape-
based registration problem commonly found in computer-assisted surgery. This
approach is especially useful where there are only a few registration points cor-
responding to only a fraction of the surface model. Tests performed on patient
models, with registration points collected during surgery, suggest that particle
filters perform well and also provide novel quality measures to the surgeon.

1 Introduction

Preoperative 3D medical images, such as CT and MRI scans, can be registered in-
traoperatively to a patient’s anatomy by estimating a transformation from surfaces in
image coordinates to anatomical points in patient coordinates for use in image-guided
surgery. Two notable limitations of current algorithms are: (a) most algorithms are non-
incremental and process an additional anatomical point by reconsidering the entire set of
anatomical points gathered during surgery; and (b) most algorithms report errors such as
root-mean-square (RMS) or target registration (TRE) but do not report the probable dis-
tribution of errors. Particle filters offer an incremental method for computing probability
distributions of the rotational and translational components of a rigid registration.

Most registration algorithms attempt to find the registration parameters that maxi-
mize the likelihood of the registration given the anatomical points, surface model, and
measurement noise. This results in an a posteriori problem that admits a solution by
expectation maximization, which has been solved by Chui and Rangarajan [2], Granger
and Pennec [6], Dellaert [4], and even by Besl and McKay [1] (the ICP algorithm).

We propose to solve the registration problem by estimating a filter distribution.
For a state vector xt at time t that represents the state of rotation and translation of
the registration transformation, and given the observations y1, ...,yt ≡ y1:t, the filter
distribution p(xt|y1:t) is the conditional probability distribution over the state vector
given the observations. We use a particle filter (PF), specifically the unscented particle
filter (UPF) described by van der Merwe et al. [13], to estimate the filter distribution.
A PF represents the posterior distribution of the states as a set of weighted particles
(or samples), making it easy to calculate statistical estimates of the state. This means
that we can estimate the registration parameters using the mean, or any other statistical
measure of location, and the precision of the parameters in terms of their standard
deviations, confidence intervals, or any other statistical measure of spread. All of these
estimates are updated incrementally as new registration points become available, which
gives the surgeon an indication of whether or not more anatomical points are needed
to achieve the desired level of precision. Multiple peaks in the distribution indicate
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that there are multiple plausible registrations and that some action should be taken to
resolve the ambiguity; broad peaks indicate that the anatomical points do not provide
good localization and that the surgeon should take this into account while operating. Our
framework can incorporate any prior knowledge, such as the location and localization
uncertainty of landmarks, into the estimation process.

2 Previous Work

Particle filtering is a Monte Carlo method for estimating the posterior distribution of a
state space model. The technique has been independently described by many different
authors; a survey of sequential sampling methods for Bayesian filtering has been written
by Doucet et al. [5]. An example of more recent work is the mixture particle filter of
Vermaak et al. [15] and its application to multi-target tracking by Okuma et al. [11].

The state space model at time t, is described by a state transition model, p(xt|xt−1),
and an observation model, p(yt|xt). The state is modeled as a first-order Markov process,
and the observations are conditionally independent given the states. We can express the
state transition model (often called the process model), F, and the observation model,
H, as

xt = [x1t x2t x3t x4t x5t x6t ]
T

xt+1 = F(xt,ut,vt)
yt = H(xt,ut,nt) (1)

where the registration state has three rotation parameters x1t
, x2t

, x3t
and three trans-

lation parameters x4t , x5t
, x6t

; ut is a known control input; and nt is the observation
noise. The process noise, vt, influences the system dynamics. The distribution of the
initial state, p(x0), is the prior distribution and must also be specified. The equations F
and H need not be linear functions of their parameters.

The basic idea underlying the PF is that the posterior distribution p(x0:t|y0:t) can be
approximated by a weighted sum of particles from the posterior distribution. We cannot
in general sample directly from the posterior, so instead we sample from a proposal
distribution q(x0:t|y0:t). The weights are called the importance weights; particles with
high weights correspond to regions of high density in the posterior. Under certain as-
sumptions, the weights at time t can be computed sequentially using the weights at time
t − 1 to yield an incremental registration algorithm. It is inefficient to keep particles
with low importance weights, so a resampling step is performed to remove particles
with low weights and multiply particles with high weights. An optional Markov-chain
Monte-Carlo step can be introduced after the resampling step to smooth the distribution
of particles. The output of the PF is a set of equally weighted samples that approxi-
mate the posterior p(x0:t|y0:t). The filter distribution is simply the marginal distribution
p(xt|y0:t).

The UPF uses the unscented Kalman filter (UKF) of Julier and Uhlmann [10] (see also
[16] and the Gaussian filters of Ito and Xiong [8]) to compute a Gaussian approximation
of the posterior for each particle; the proposal is drawn from the resulting Gaussian
distribution. The UKF is a filter that assumes a state space model given by Equation 1.



568 B. Ma and R.E. Ellis

– Initialize the filter by drawing i = 1, ..., N particles xi
0 from the prior distribution of the states

p(x0). Assign to each particle a covariance matrix Pi
0 (which will be propagated through the

UKF).
– For time t = 1, 2, 3, ...

• For i = 1, ..., N
∗ Filter particle xi

t−1 with covariance Pi
t−1 using the UKF to get an updated estimate

x̄i
t and P̂i

t

∗ Sample x̂i
t from the Gaussian proposal q(xi

t|xi
0:t−1,y0:t) = N (x̄i

t, P̂
i
t−1)

∗ Compute the observation likelihood p(yt|x̂i
t)

∗ Compute the state transition prior p(x̂i
t|xi

t−1)

∗ Compute the importance weight wi
t ∝ p(yt|x̂i

t)p(x̂i
t|xi

t−1)

q(x̂i
t|xi

0:t−1,y0:t)

• Normalize the importance weights wi
t = wi

t/
∑N

i=1 wi
t

• Apply a resampling scheme to remove particles with low weights and multiply particles
with high weights if necessary.

• Output the N particles xi
t, or more generally the particle trajectories xi

0:t

Fig. 1. The unscented particle filter algorithm.

It propagates the state mean and covariance through the (possibly non-linear) process
and observation models by using a set of deterministically sampled points called sigma
points. The previously cited references provide evidence of the superior performance of
the UKF compared to the well known extended Kalman filter.

Figure 1 is an abbreviated version of the UPF algorithm; the algorithm is discussed
in much greater detail by van der Merwe et al. [13] and the application of the filter to
object tracking is given by Rui and Chen [12].

3 UPF Registration

We use the state space model

xt+1 = F(xt,vt) = xt + N (0,Qt) (2)

yt = H(xt,ut,nt) =



r(x1t , x2t , x3t)(u1 + [x4t x5t x6t ]

T )
...

r(x1t
, x2t

, x3t
)(ut + [x4t

x5t
x6t

]T )


 + N (0,Rt) (3)

Equation 2 is the process model for estimating the registration state of the three rotation
parameters and the three translation parameters; the model has time-invariant state,
except for the additive process noise, because we are estimating a constant. The zero-
mean Gaussian process noise with covariance Qt allows us to move from possibly poor
initial estimates of the state to successively better estimates. We anneal Qt towards 0
over time as our estimates become better. For this article, we took Qt to be uncorrelated
with initial variances of 1.22 × 10−3rad2 and 4mm2 for the rotational and translational
components; we annealed by a factor of 0.7 after each time step. We prefer to use rotation
parameters that surgeons are most familiar with, measured as order-independent angles
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of rotation in the coronal, sagittal, and horizontal planes. Iyun et al. [9]1 presented a
simplified version of this rotation matrix.

Our observation model is given by Equation 3 where r(x1t , x2t , x3t
) is a rotation

matrix, [x4t x5t x6t ]
T is a translation vector, ui is the ith registration point in patient

coordinates. The model is simply the estimated registration transformation applied to
the registration points (which we supply as the control input) concatenated into a single
vector; the length of the vector at time t is 3t. We assume additive, zero-mean Gaussian
noise with covariance Rt; the noise is the displacement of each transformed registration
point to the surface of the model. For this article, we took Rt to be uncorrelated with
initial variances of 4mm2 and annealed by a factor of 0.8 after each time step.

The actual observation, yt, should be the vector formed by the concatenation of the
model points corresponding to the registration points; of course, these correspondences
are unknown. We used the nearest-neighbor approximation made popular by Besl and
McKay [1]; computationally more expensive alternatives such as the Mahalanobis dis-
tance (Granger and Pennec [6]) or Gaussian weighted distance (Chui and Rangarajan [2],
Grimson et al. [7]) could also be used.

The prior distribution x0 depends on how the initial estimate of the registration
transformation was obtained, e.g., by performing a Monte Carlo simulation of the initial
estimation process. If anatomic landmarks or fiducial markers are present then the prior
should reflect this information.

4 Experiments

We performed experiments to test for accuracy and precision using synthetic and intraop-
eratively digitized registration points for the proximal tibia, distal radius, and proximal
femur. All surface models were derived from CT scans of patients who consented to
surgery and research use of data in a study approved by the Research Ethics Board of
Queen’s University and Kingston General Hospital.

4.1 Synthetic Points and the Proximal Tibia

We tested for registration accuracy and precision by massively subsampling points from
a realistic surgical exposure of the proximal tibia. Fifteen points were selected from the
surface model generated from a CT scan of a patient that underwent high tibial osteotomy
(HTO). We generated 500 random transformations by drawing from the uniform dis-
tribution U(±20◦,±20◦,±20◦,±10mm,±10mm,±10mm); each transformation was
applied to the points to which we added random noise drawn from the uniform distribu-
tion U(±0.5mm,±0.5mm,±0.5mm). The range of angles and displacements are large
compared to the error of the initial estimate that we typically obtain in surgery; the mean
total angular displacement was 19◦ and mean total translation was 10mm. We used 5000
particles and a prior of U(±25◦,±25◦,±25◦,±12mm,±12mm,±12mm). We used the
UPF to register the transformed point sets, taking the mean of the posterior distribution
for the registration parameters. The distribution of rotation and translation errors are
shown in Figure 2.

1 There is a typographical error in this reference; in Equation 1, page 235, the term dc − af
should be af − dc
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Fig. 2. Proximal tibia and synthetic data results. Error distributions for 500 UPF registra-
tions; standard deviations are 0.98◦, 0.49◦, 2.02◦ for the x, y, z axis rotation errors, and
0.39mm, 0.36mm, 0.77mm for the x, y, z axis translation errors.

Fig. 3. Proximal tibia and synthetic data results. Left: the registration data points. The other four
images are of registrations with large rotation and/or translation errors. The spheres indicating the
registration points are 4mm in diameter.

The consistency of the registrations was good, particularly in the rotations about
and the translations along the x and y axes. Rotation errors about and translation errors
along the z axis (the long axis of the bone) were worse, but this was expected given
the shape of the proximal tibia and the location of the surgically accessible region. The
registrations that were far from the correct registrations still produced small RMS errors
between the registered points and the surface model; the filter simply found a different
fit of the very small number of registration points to the model. Figure 3 illustrates the
potential difficulty in finding the correct registration.

The evolution of the posterior distribution of the rotation about the z axis for one
trial is shown in Figure 4. When there are only a few registration points, the UPF finds
a few different possible values for the angle of rotation. As more points are added, the
ambiguity is resolved and the posterior converges to narrow range of values.

4.2 Intraoperative Points and the Distal Radius

We performed a retrospective analysis of registration data from seven patients who un-
derwent computer-assisted distal radius osteotomy (Croitoru et al. [3]). We used the
registration data collected intraoperatively using a calibrated pointer and an Optotrak
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Fig. 4. Proximal tibia and synthetic data results. The evolution of the posterior distribution of the
z-axis rotation. The prior distribution, sampled from U(±25◦) is at the bottom. Moving towards
the top of the page are the posteriors after 6, 7, ..., 15 registration points have been processed.

Table 1. Distal radius and intraoperative registration points experimental results. Standard devia-
tions, over 100 trials, of the registration state using the UPF to register to the distal radius. The z
axis is the long axis of the bone.

Num. Reg. Pts. θx θy θz tx ty tz

11 0.74◦ 0.54◦ 2.48◦ 0.36mm 0.20mm 0.50mm
10 0.51◦ 0.83◦ 1.26◦ 0.10mm 0.06mm 0.31mm
11 0.54◦ 0.37◦ 0.69◦ 0.08mm 0.10mm 0.30mm
11 0.36◦ 0.48◦ 0.42◦ 0.14mm 0.12mm 0.80mm
10 0.38◦ 0.27◦ 0.66◦ 0.16mm 0.07mm 0.65mm
11 0.26◦ 0.52◦ 1.47◦ 0.05mm 0.06mm 0.13mm
12 0.14◦ 0.33◦ 0.69◦ 0.07mm 0.03mm 0.11mm

3020 localizer (NDI, Waterloo, Canada) and examined the consistency of the UPF reg-
istrations. Lister’s tubercle is a prominent anatomic landmark on the distal radius. We
can use the tubercle to directly estimate the translation component of the registration,
thus reducing the range of the translation component of the prior.

We generated 100 random transformations, starting from the surgical registration,
for each bone by drawing from the uniform distribution U(±10◦, ±10◦, ±10◦, ±1mm,
±1mm, ±3mm). We applied these transformations to the registration points and com-
puted the UPF registrations using 2000 particles and a prior of U(±12◦, ±12◦, ±12◦,
±3mm, ±3mm, ±5mm); standard deviations over the 100 trials are shown in Table 1.

4.3 Intraoperative Points and the Proximal Femur

We examined the utility of obtaining the filter distribution by retrospectively calculat-
ing the distribution of probable drill paths for a computer-assisted minimally invasive
removal of a deep bone tumor. The registration points for this procedure were collected
through a small incision on the lateral side of the hip and percutaneously using a needle-
tipped probe. The cylindrical shape of the proximal femur makes it difficult to precisely
estimate the axial rotation component of the registration transformation; the standard
deviation for this component was 3.34◦. Figure 5 illustrates the osteoma, planned drill
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A B C

Fig. 5. Proximal femur and intraoperative registration points experimental results. A an osteoid
osteoma located in the neck of the femur and the planned drill path. B predicted drill paths after
registration viewed in the frontal plane. C predicted drill paths in the axial plane; the axial rotation
component has the highest uncertainty due to the almost cylindrical shape of the proximal femur.

path, and the drill path predicted by each of the 2000 particles. It is easy to appreciate
the consequences of uncertainty in the axial rotation by direct visualization of the drill
paths; target registration error (TRE) is a single number that is less informative.

5 Discussion

UPF registration offers notable advantages to most alternative approaches. Because it
is iterative, a surgeon can collect only as many points as needed, which can reduce
operative time. More importantly, the surgeon can directly visualize the quality of the
registration, by examining either the posterior distribution (which gives an overall view
of the error space) or of the transformation of a planned trajectory (which gives a task-
specific view of error effects). For example, had UPF registration been available when
the osteoid osteoma case was performed, the surgeons would have been vividly aware
that they were well on target but that the drill bit was more likely to track posteriorly.2

Limitations of our study include running times, an unoptimized implementation, and
unknown robustness to statistical outliers. The UPF runs in an acceptable period of time
when using a small number of registration points. For example, using an Intel Pentium 4
PC (2.8 GHz) we updated the state estimate with 2000 particles and 15 registration points
in 1.5 seconds; much of the time was spent performing nearest-neighbor searches. We
have not thoroughly investigated the relationship between the number of particles and
the estimation process; it may be possible to safely reduce the number of particles. It may
even be possible to avoid particle filtering altogether by estimating the posterior density
using a Gaussian mixture filter (van der Merwe and Wan [14] or Ito and Xiong [8]). We
also have not addressed the issue of robustness to outliers, but we believe that the PF
framework will allow us to improve our algorithm in this respect.

2 The tumor was successfully excised using robust registration for guidance.
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We have illustrated an application of estimating the filter distribution for surgical
removal of an osteoid osteoma. Any quantities that depend on having a registration
transformation, such as instrument trajectories, can also be estimated and the uncer-
tainty of the registration can be propagated into the estimations. We believe that UPF
registration will allow us to estimate the stability of surface-based registration, which is
an important but poorly understood part of computer-assisted surgical systems.
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